Presenter Ping Zhang, Luleå University of Technology

Project leader Ping Zhang, Luleå University of Technology

Partners LTU, LKAB, Boliden, Zinkgruvan Mining

SWEDISH MINING INNOVATION

Destressing strategies for mining under highly stressed conditions in the deep mines of Sweden

Med stöd från

Energimyndigheten FORMAS

Strategiska innovations

SWEDISH MINING INNOVATION

Med stöd från

Goals of the project

- proneness and deformation potential of excavations,
- conventional blasting,
- minimize damage to the surrounding openings, and
- under highly stressed conditions in the deep mines of Sweden.
- Expected impact of the project
 - No fatalities
 - Ground control measures that can ensure safe conditions with no unforeseen fallouts
 - Energy-effective mining processes

SWEDISH MINING INNOVATION

Improve the understanding of the effects of construction process on the burst-

Evaluate the effectiveness of destress blasting technique in comparison with the

• Improve the blasting design to maximize the effectiveness of destress blasting and

Develop destressing strategies to mitigate rockburst risk and deformation potential

Strategiska

Project Plan

SWEDISH MINING INNOVATION Med stöd från VINNOVA

WP2: Field investigation of construction process on the burst-proneness of excavations

Investigation of the construction process

□ 1

SWEDISH MINING INNOVATION

stion	naire				
	Informatio	n of responder			
on		Date:		Time:	
	Que	estions			
many yea	rs of experience ir	n scaling do you ha	ave?		
		<u> </u>			
nich year gh for a d	of experience did y rift?	you feel confident	if the amou	nt of scaling, is	
ifficult by	observation of th	e drift if it´s going	to be easy o	or hard to scale?	
Yes (If ye	, elaborate)				
NO ((If no	, elaborate)				
ou feel co (Ore/was	nfident in distingu terock)?	uishing the differe	nt types of r	ock that occur in	the
Yes					
L ! -					_

Questionnaire prepared for interviewing scaling operators

Destress drilling tests conducted

WP3: Development of methodology for evaluating burst-proneness

3DEC 7.00 Elastic ©2021 Itasca Consulting Group, In Elastic strain energy Cut Plane: on Calculated by: Volumetric Averaging 3.0000E+05 2.8500E+05 2.7000E+05 2.5500E+05 2.4000E+05 2.2500E+05 2.1000E+05 1.9500E+05 1.8000E+05 1.6500E+05 1.5000E+05 1.3500E+05 1.2000E+05 1.0500E+05 9.0000E+04 7.5000E+04 6.0000E+04 4.5000E+04 3.0000E+04 1.5000E+04 0.0000F+00 3DEC 7.00 Plastic ©2021 Itasca Consulting Group, In Plastic strain energy Cut Plane: on Calculated by: Volumetric Ave 4.0000E+05 3.8000E+05 3.6000E+05 3.4000E+05 3.2000E+05 3.0000E+05 2.8000E+05 2.6000E+05 2.4000E+05 2.2000E+05 2.0000E+05 1.8000E+05 1.6000E+05 1.4000E+05 1.2000E+05 1.0000E+05 8.0000E+04 6.0000E+04 4.0000E+04 2.0000E+04 5.0000E+02

SWEDISH

MINING

INNOVATION

Without fracture

α=62.4°

Energy parameters developed to evaluate burst potential

Med stöd från

WP4: Destress blasting design and its preliminary evaluation

Evaluation of the effectiveness of destressing

SWEDISH MINING INNOVATION

Suggested destress blasting layout

Energimyndigheten FORMAS

WP5: Field monitoring and numerical model calibration

Accelerometer array design

SWEDISH MINING INNOVATION Layout of the footwall drift at the instrumented site

Dissemination

SMI Program Day:

- 2021-10-05, online
- 2023-10-26, Stockholm

Workshops:

- DESTRESSING project reference group. Internal project workshops. 2021-
- Online event, Sep 14-15, 2023

Conference Papers:

- Salzburg, Austria, October 9-14, 2023, Austrian Society for Geomechanics: Salzburg, pp. 313-318.
- Geomechanics, Aug 30-Sep 2, Adelaide, pp. 1135-1146.
- Rockburst and Seismicity in Mines (RaSiM10), Apr 26-28, Tucson, 14p.

Thesis:

University of Technology, 50p.

SWEDISH MINING INNOVATION

Zhang P. 2023. How rock mechanics can contribute to deep and sustainable underground mining? Oulu Mining Summit,

• Zou Y. and Zhang P. 2023. Assessment of energy release and redistribution on excavation instabilities for underground mining. In: Proceedings of the ISRM 15th International Congress on Rock Mechanics and Rock Engineering & 72nd Geomechanics Colloquium – Challenges in Rock Mechanics and Rock Engineering, Schubert W. & Kluckner A. (eds),

Zhang P. 2022. Rockburst management at LKAB's Kiirunavaara Mine: what can we learn from COVID-19 management. In: Potvin Y. (ed.). Caving 2022: The Fifth International Conference on Block and Sublevel Caving, Australian Centre for

Ylmefors A., Zhang P. and Mozaffari S. 2022. Classification of mining induced seismicity at the Kiirunavaara mine.

Andreas Ylmefors. 2023. Classification of mining induced seismicity at the Kiirunavaara mine. Master thesis, Luleå

Strategiska

Next Steps

- Install instruments and conduct field tests at Kiirunavaara Mine
- Calibrate numerical models
- Develop destressing strategies for mining under highly stressed conditions
- 6th workshop scheduled (November 15, 2023)
- 3 journal papers to be submitted
- 1 conference paper to be submitted to MassMin2024 conference (Sep 17-19, Kiruna)

SWEDISH MINING INNOVATION

Mining innovation for a sustainable future

SWEDISH MINING INNOVATION

Med stöd från

