Fossil-Free Combustion in Grate-kiln Pelletizing Plants Using Co-jet Burner

Presenter Sofia Larsson, Luleå University of Technology

Project leader Sofia Larsson, Luleå University of Technology

Partners Luleå University of Technology, LKAB, Taoshi Energiteknik

SWEDISH MINING INNOVATION

Program Day 2023

Med stöd från

Energimyndigheten FORMAS

Background

Iron ore pelletizing process large contributor to CO₂ emissions

➤ ~3% of Swedish industry

Grate-kiln plants today

Coal and oil used in flame in rotary kiln

SWEDISH MINING INNOVATION

Main goal of the project

Reduce CO₂ emissions from grate-kiln pelletizing plants

- Replace fossil fuels with hydrogen
- Aimed at LKAB's rotary kiln

SWEDISH MINING INNOVATION

Challenge

Long flame \rightarrow High inlet velocity Slow mixing

Flow direction of pellets

SWEDISH MINING INNOVATION

Energimyndigheten FORMAS

Solution

Not possible to use hydrogen using existing commercial equipment > A different approach is needed!

Coaxial jet burner

Control mixing and hence flame length

H2

Med stöd från

Goals of the project – in detail

- Validated flow field simulation model
- Experimental model
- Simulation model, incl. H₂ combustion
- Co-jet burner concept
- Environmental impact
 - Energy efficiency
 - Elimination of CO₂ emissions
 - Process efficiency

SWEDISH MINING INNOVATION

Energimyndigheten FORMAS

Project Plan

Simplified simulations

- > Fast results
- > Find trends
- Parameter sensitivity study

Investigate co-jet

- > H₂ as fuel
- Compare to fossil fuels (coal)

|--|

Base case – coal, single jet

H₂, single jet, jet power and kinetic energy same as base case

SWEDISH MINING INNOVATION

 H_2 , co-jet, M_{jet} =0.5

Project results so far

SWEDISH MINING INNOVATION

0.3

0.3

0.2

Hydrogen flammability range 4-75 vol%

Dissemination

Two articles/papers planned

- > One journal (in progress)
- > One conference

Conferences

- > Fluid mechanics
- > Mining

SWEDISH MINING INNOVATION

Med stöd från

Energimyndigheten FORMAS

Next Steps

Still in the early phases

Move onto more realistic simulations

- $> 2D \rightarrow 3D$
- Experimental validation
- Reactions
- Combustion

SWEDISH MINING INNOVATION

Mining innovation for a sustainable future

SWEDISH MINING INNOVATION

Med stöd från

