Impact of miNing-project on the reduction of nitrogen discharges in mining processes

Presenter Roger Herbert, Uppsala University

Project leader

Frauke Ecke, Swedish University of Agricultural Sciences (now at University of Helsinki)

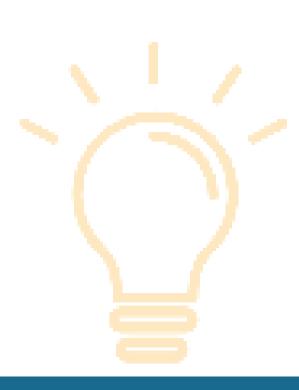
Partners

Luleå University of Technology, LKAB, Rock Tech Centre AB, Swedish University of Agricultural Sciences, Uppsala University

Project duration 2013 - 2015 / 2014 - 2018

Background

- Much of the nitrogen in mining environments is derived from ammonium nitrate – based explosives used in the mine
- Undetonated ammonium nitrate dissolves in mine drainage and adsorbs to waste rock
- Risk for toxic effects from certain forms of nitrogen (ammonia NH₃ and nitrite) in surface water systems, as well as eutrophication in nitrogenlimited aquatic environments
- Passive, low cost, low maintenance methods are needed in industry to treated many small diffuse releases from waste rock deposits


Reduction of nitrogen discharges in mining processes and mitigating its environmental impact – miNing x 2 (full-scale)

Overall objective

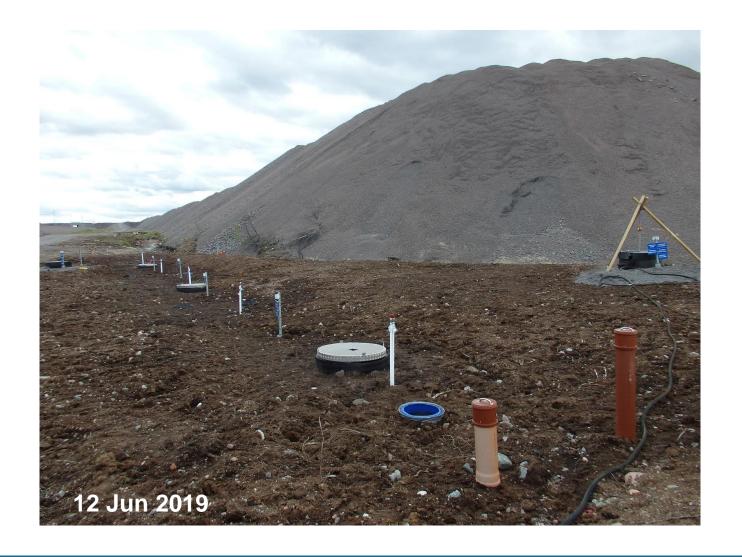
 Identification of treatment techniques that successfully remove N from mine site drainage when employed in full scale operation, so recipient concentrations are maintained at levels that are in agreement with national and international legislation.

Study focus

- Bioreactor system for nitrogen removal from mine waters through denitrification
- System for optimizing microbial denitrification in tailings ponds
- Wetland systems for nitrogen removal through phytoremediation by macrophytes and algae

mining x 2: Bioreactor system for nitrogen removal from mine waters through denitrification

- Denitrifying woodchip bioreactor treated a small flow from LKAB's clarification pond in Kiruna during 2015 – 2016.
- High degree of nitrate removal achieved, with a low production of denitrification byproducts
- Successful development of treatment technology sparked interest in new projects.



Outcome

- Funding acquired from EIT RawMaterials for upscaling project with focus on commercialization of bioreactor technology. Project period 2018 - 2021.
- Three full-scale bioreactors installed to treat waste rock drainage at Kiruna mine.
- Treatment performance has met expectations and LKAB plans to install up to 50 bioreactors for nitrate removal at future waste rock disposal site.
- Start-up 14N AB established for providing **nitrem** service to customers

Impact

- 1.6 tons of nitrogen removed by NITREM bioreactors during 2018 - 2021
- Passive treatment technology has very low energy consumption
- Bioreactor for nitrogen abatement included in LKAB's new environmental permit
- Denitrifying bioreactors also constructed for rock quarries and tunneling projects in various commercial projects

© LKAB

The Future

- New research projects excess heat from pellets production to be used for heating bioreactors
- New business opportunities bioreactor technology applicable in various operational environments
- New directions SMI / Vinnova project SULFREM to connect denitrifying bioreactors with sulfate - removing system. 2022 - 2025.

Mining innovation for a sustainable future

